(x^2)+4x=63

Simple and best practice solution for (x^2)+4x=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+4x=63 equation:



(x^2)+4x=63
We move all terms to the left:
(x^2)+4x-(63)=0
a = 1; b = 4; c = -63;
Δ = b2-4ac
Δ = 42-4·1·(-63)
Δ = 268
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{268}=\sqrt{4*67}=\sqrt{4}*\sqrt{67}=2\sqrt{67}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{67}}{2*1}=\frac{-4-2\sqrt{67}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{67}}{2*1}=\frac{-4+2\sqrt{67}}{2} $

See similar equations:

| 4x-3=3x+27 | | -5x-4=-6x-3 | | 4(x+7)=3(4x-1) | | 7x+4/5-2=7 | | 1.75(3p-4)=98 | | 26=(13(n-1))/3 | | 26=9(n-1) | | 26=9(n-1)/3 | | 3s+3=36 | | 4d=7d+15 | | 2(x+2)+2x+2=20 | | 2(2x+2)+2x+2=20 | | 8w-12=0w-6 | | P2=13p-36 | | -8=18x-5x2 | | 14-x-3x2=0 | | 4+9x2=-12x | | (9.3-x)(6.75-x)2=114 | | 6a-69=3a | | 4t+21=7t-3 | | 3b+16=4b | | 16x-33=5x | | 15v-1=5v+19 | | 12x+3x-10=-4x+37 | | 17s-8=15s-6 | | 13(5x-4)-6(7x-8)=-2(5x-6)+3(11x-4) | | 3a-20=2a+30 | | 18u-16=2u+16 | | 6v+62=v+77 | | 9(2x-13)-4(5x-3)=3(5x-10)-4(10+3x) | | t+5=6t | | 2x-1=1x-8 |

Equations solver categories